Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 530
1.
Ann Surg ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38708888

OBJECTIVE: To compare the effect of balanced multielectrolyte solutions(BMES) versus normal saline(NS) for intravenous fluid on chloride levels and clinical outcomes.in patients with predicted severe acute pancreatitis (pSAP). SUMMARY BACKGROUND DATA: Isotonic crystalloids are recommended for initial fluid therapy in acute pancreatitis, but whether the use of BMES in preference to NS confers clinical benefits is unknown. METHODS: In this multicenter, stepped-wedge, cluster-randomized trial, we enrolled patients with pSAP (APACHE II score ≥8 and C-reactive protein >150 mg/L) admitted within 72 hours of the advent of symptoms. The study sites were randomly assigned to staggered start dates for one-way crossover from the NS phase (NS for intravenous fluid) to the BMES phase(Sterofudin for intravenous fluid). The primary endpoint was the serum chloride concentration on trial day3. Secondary endpoints included a composite of clinical and laboratory measures. RESULTS: Overall, 259 patients were enrolled from eleven sites to receive NS(n=147) or BMES(n=112). On trial day3, the mean chloride level was significantly lower in patients who received BMES(101.8 mmol/L(SD4.8) versus 105.8 mmol/L(SD5.9), difference -4.3 mmol/L [95%CI -5.6 to -3.0 mmol/L];P<0.001). For secondary endpoints, patients who received BMES had less systemic inflammatory response syndrome(19/112,17.0% versus 43/147,29.3%, P=0.024) and increased organ failure-free days (3.9 d(SD2.7) versus 3.5days(SD2.7), P<0.001) by trial day7. They also spent more time alive and out of ICU(26.4 d(SD5.2) versus 25.0days(SD6.4), P=0.009) and hospital(19.8 d(SD6.1) versus16.3days(SD7.2), P<0.001) by trial day30. CONCLUSIONS: Among patients with pSAP, using BMES in preference to NS resulted in a significantly more physiological serum chloride level, which was associated with multiple clinical benefits(Trial registration number: ChiCTR2100044432).

2.
Front Pharmacol ; 15: 1364616, 2024.
Article En | MEDLINE | ID: mdl-38659578

As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic ß-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.

3.
Environ Sci Technol ; 58(16): 6900-6912, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38613493

Foliar application of beneficial nanoparticles (NPs) exhibits potential in reducing cadmium (Cd) uptake in crops, necessitating a systematic understanding of their leaf-root-microorganism process for sustainable development of efficient nano-enabled agrochemicals. Herein, wheat grown in Cd-contaminated soil (5.23 mg/kg) was sprayed with different rates of four commonly used NPs, including nano selenium (SeNPs)/silica (SiO2NPs)/zinc oxide/manganese dioxide. SeNPs and SiO2NPs most effectively reduced the Cd concentration in wheat grains. Compared to the control, Cd concentration in grains was significantly decreased by 35.0 and 33.3% by applying 0.96 mg/plant SeNPs and 2.4 mg/plant SiO2NPs, and the grain yield was significantly increased by 33.9% with SeNPs application. Down-regulated gene expression of Cd transport proteins (TaNramp5 and TaLCT1) and up-regulated gene expression of vacuolar Cd fixation proteins (TaHMA3 and TaTM20) were observed with foliar SeNPs and SiO2NPs use. SeNPs increased the levels of leaf antioxidant metabolites. Additionally, foliar spray of SeNPs resulted in lower abundances of rhizosphere organic acids and reduced Cd bioavailability in rhizosphere soil, and soil microorganisms related to carbon and nitrogen (Solirubrobacter and Pedomicrobium) were promoted. Our findings underscore the potential of the foliar application of SeNPs and SiO2NPs as a plant and rhizosphere soil metabolism-regulating approach to reduce Cd accumulation in wheat grains.

4.
Bioorg Chem ; 147: 107369, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38640721

Non-alcoholic fatty liver disease (NAFLD) is a complex pathogenic metabolic syndrome characterized by increased inflammation and endoplasmic reticulum stress. In recent years, natural polysaccharides derived from traditional Chinese medicine have shown significant anti-inflammatory effects, making them an attractive therapeutic option. However, little research has been conducted on the therapeutic potential of dried tangerine peel polysaccharide (DTPP) - one of the most important medicinal resources in China. The results of the present study showed that DTPP substantially reduced macrophage infiltration in vivo and suppressed the expression of pro-inflammatory factors and endoplasmic reticulum stress-related genes. Additionally, surface plasmon resonance analysis revealed that DTPP had a specific affinity to myeloid differentiation factor 2, which consequently suppressed lipopolysaccharide-induced inflammation via interaction with the toll-like receptor 4 signaling pathway. This study provides a potential molecular mechanism underlying the anti-inflammatory effects of DTPP on NAFLD and suggests DTPP as a promising therapeutic strategy for NAFLD treatment.

5.
ACS Nano ; 18(18): 11813-11827, 2024 May 07.
Article En | MEDLINE | ID: mdl-38657165

Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.


Nanoparticles , Solanum lycopersicum , Sulfur , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Sulfur/metabolism , Sulfur/chemistry , Nanoparticles/chemistry , Nanoparticles/metabolism , Photosynthesis , Surface Properties , Time Factors , Fertilizers , Stearic Acids/metabolism , Stearic Acids/chemistry , Plant Leaves/metabolism
6.
Food Funct ; 15(9): 5103-5117, 2024 May 07.
Article En | MEDLINE | ID: mdl-38680105

Hydroxytyrosol (HT), a phenolic extra-virgin olive oil compound used as a food supplement, has been recognized to protect liver function and alleviate stress-induced depressive-like behaviors. However, its protective effects against stress-induced liver injury (SLI) remain unknown. Here, the anti-SLI effect of HT was evaluated in mice with chronic unpredictable mild stress-induced SLI. Network pharmacology combined with molecular docking was used to clarify the underlying mechanism of action of HT against SLI, followed by experimental verification. The results showed that accompanying with the alleviation of HT on stress-induced depressive-like behaviors, HT was confirmed to exert the protective effects against SLI, as represented by reduced serum corticosterone (CORT), aspartate aminotransferase and alanine aminotransferase activities, as well as repair of liver structure, inhibition of oxidative homeostasis collapse, and inflammation reaction in the liver. Furthermore, core genes including histone deacetylase 1 and 2 (HDAC1/2), were identified as potential targets of HT in SLI based on bioinformatic screening and simulation. Consistently, HT significantly inhibited HDAC1/2 expression to maintain mitochondrial dysfunction in an autophagy-dependent manner, which was confirmed in a CORT-induced AML-12 cell injury and SLI mice models combined with small molecule inhibitors. We provide the first evidence that HT inhibits HDAC1/2 to induce autophagy in hepatocytes for maintaining mitochondrial dysfunction, thus preventing inflammation and oxidative stress for exerting an anti-SLI effect. This constitutes a novel therapeutic modality to synchronously prevent stress-induced depression-like behaviors and liver injury, supporting the advantaged therapeutic potential of HT.


Autophagy , Histone Deacetylase 2 , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Animals , Mice , Phenylethyl Alcohol/pharmacology , Autophagy/drug effects , Male , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Mice, Inbred C57BL , Histone Deacetylase 1/metabolism , Molecular Docking Simulation , Liver/drug effects , Liver/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/complications
7.
RSC Adv ; 14(19): 13482-13488, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38665504

Moxifloxacin (MFX) has attracted increasing public concern recently, and the development of a simple and effective analysis method has become a research focus. In this work, a simple, sensitive and ratiometric fluorescent sensor based on Ag-MOF@curcumin was designed and investigated. Ag-MOF@curcumin displays emission at 410 nm and 475 nm under excitation at 330 nm. When MFX is added, a new emission peak appears at 500 nm, and the F500/F410 ratio has a linear relationship with the MFX concentration in the range 0-35 µmol L-1 with a low LOD (0.179 µmol L-1). Finally, the developed sensor was used for the determination of MFX in milk. This work provides an excellent fluorescent sensor for highly selective and rapid detection of MFX residues.

8.
Sci Rep ; 14(1): 9438, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658609

The cutting and crushing of coal and rock containing gangue is the result of the coupling effect of multiple factors. The geometric parameters of the working mechanism, the kinematic parameters of the shearer, and the physical and mechanical properties of the coal and rock to be cut all affect the cutting and crushing process of the shearer. To study the coal falling trajectory of cutting coal and rock using a spiral drum, optimal cutting parameters were obtained, efficient cutting using a spiral drum was achieved, and analysis of the coal falling trajectory and strength of the drum of a shearer based on bidirectional coupling technology was proposed based on particle discrete element contact theory and virtual prototype technology. The discrete element method multi-flexible body dynamics two-way coupling method was used to obtain cutting and interactive information about the spiral drum for a complex coal seam with gangue. The cutting conditions of the spiral drum under different cutting depths, rotational speeds, and traction speeds were determined. The movement status of coal and rock particles was monitored under different working conditions. Coal falling trajectory equations for the coal and rock particles were compiled under different working conditions, and the coal falling trajectory curve was drawn. The optimal coal loading rate was used as the measurement standard for the coal falling trajectory, and the optimal coal falling trajectory of the drum was obtained through full factor experiments. The load of the drum and pick was extracted, their stress and deformation were analyzed, and fatigue life analysis was performed on the pick with the highest stress. The results indicate that the maximum deformation occurs on the cutting teeth that are cutting hard gangue. The stress of the tooth seat is mainly concentrated at the root of the tooth seat, and its maximum equivalent stress is less than the yield limit value of the selected material. Therefore, the material selection and structural design of the drum are safe and reliable. By building a coal mining machine cutting coal and rock experimental platform and monitoring the working status of the designed spiral drum, it meets the usage requirements. Based on industrial experiments conducted underground, the measured average coal loading rate of the shearer drum was 46.31%, achieving stable operation and verifying that the designed drum of the shearer has an efficient cutting ability.

9.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38543111

COVID-19, caused by SARS-CoV-2, has emerged as the most destructive emerging infectious disease of the 21st century. Vaccination is an effective method to combat viral diseases. However, due to the constant mutation of the virus, new variants may weaken the efficacy of vaccines. In the current field of new coronavirus research, viral protease inhibitors have emerged as a highly regarded therapeutic strategy. Nevertheless, existing viral protease inhibitors do not fully meet the therapeutic needs. Therefore, this paper turned to traditional Chinese medicine to explore new active compounds. This study focused on 24 isolated compounds from Acorus calamus L. and identified 8 active components that exhibited significant inhibitory effects on SARS-CoV-2 PLpro. Among these, the compound 1R,5R,7S-guaiane-4R,10R-diol-6-one demonstrated the best inhibitory activity with IC50 values of 0.386 ± 0.118 µM. Additionally, menecubebane B and neo-acorane A exhibited inhibitory activity against both Mpro and PLpro proteases, indicating their potential as dual-target inhibitors. The molecular docking results confirmed the stable conformations of these compounds with the key targets and their good activity. ADMET and Lipinski's rule analyses revealed that all the small molecule ligands possessed excellent oral absorption properties. This study provides an experimental foundation for the discovery of promising antiviral lead compounds.

10.
Rapid Commun Mass Spectrom ; 38(9): e9723, 2024 May 15.
Article En | MEDLINE | ID: mdl-38504484

RATIONALE: Hypercholesterolemia is an important risk factor for cardiovascular diseases and death. This study performed pseudo-targeted lipidomics to identify differentially expressed plasma lipids in hypercholesterolemia, to provide a scientific basis for the diagnosis and pathogenesis of hypercholesterolemia. METHODS: Pseudo-targeted lipidomic analyses of plasma lipids from 20 patients with hypercholesterolemia and 20 normal control subjects were performed using liquid chromatography-mass spectrometry. Differentially expressed lipids were identified by principal component analysis and orthogonal partial least squares discriminant analysis. Receiver operating characteristic curves were used to identify differentially expressed lipids with high diagnostic value. The Kyoto Encyclopedia of Genes and Genomes pathway database was used to identify enriched metabolic pathways. RESULTS: We identified 13 differentially expressed lipids in hypercholesterolemia using variable importance of projection > 1 and p < 0.05 as threshold parameters. The levels of eight sphingomyelins and cholesterol sulfate were higher and those of three triacylglycerols and lysophosphatidylcholine were reduced in hypercholesterolemia. Seven differentially expressed plasma lipids showed high diagnostic value for hypercholesterolemia. Functional enrichment analyses showed that pathways related to necroptosis, sphingolipid signaling, sphingolipid metabolism, and steroid hormone biosynthesis were enriched. CONCLUSIONS: This pseudo-targeted lipidomics study demonstrated that multiple sphingomyelins and cholesterol sulfate were differentially expressed in the plasma of patients with hypercholesterolemia. We also identified seven plasma lipids, including six sphingomyelins and cholesterol sulfate, with high diagnostic value.


Hypercholesterolemia , Lipidomics , Humans , Lipidomics/methods , Hypercholesterolemia/diagnosis , Sphingomyelins , Triglycerides , Biomarkers
11.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 156-160, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38430027

To investigate whether Liraglutide combined with Jinlida granules affects glycolipid metabolism and islet function in the treatment of type 2 diabetes mellitus (T2DM), a control group and an observation group were established with 90 T2DM patients. The control group was given Jinlida treatment and the observation group was given liraglutide combined treatment for 12 weeks. The clinical efficacy, glycolipid metabolism, bone metabolism, islet function, and endothelial function. The curative effect of the observation group was better than that of the control group. After treatment, FBG, 2hPG, HbAlc, TC, TG, and LDL-C in the observation group were lower and HDL-C was higher than those in the control group (P < 0.05). After treatment, the observation group showed higher bone mineral density, osteocalcin, FINS, and HOMA-ß and lower HOMA-IR than the control group (P < 0.05). After treatment, endothelin-1 level in the observation group was lower than that in the control group, and the NO level was higher (P < 0.05). No significant difference was found in the incidence of adverse reactions between the two groups (P > 0.05). Liraglutide combined with Jinlida in T2DM can improve glucose, lipid, and bone metabolism, promote the recovery of islet function, and enhance vascular endothelial function.


Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liraglutide/therapeutic use , Blood Glucose/metabolism , Glycolipids/therapeutic use
12.
Laryngoscope ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38544487

OBJECTIVES: Sinonasal inverted papilloma (SNIP) is a noncancerous tumor that develops in the mucous membrane of the nasal sinuses. Many malignancies are tightly linked to autophagy, an intracellular self-degradation mechanism. HMGB1 has demonstrated its ability to modulate autophagy in many pathological conditions. This work investigates how HMGB1 and other genes involved in autophagy contribute to SNIP. MATERIAL AND METHODS: The study included 45 patients with SNIP and a control group consisting of 28 individuals. In each group, qPCR was employed to examine the mRNA expression levels of genes correlated with autophagy and HMGB1. HMGB1 and genes associated with autophagy were examined for protein expression levels via Western Blot and immunohistochemical staining assays. At the same time, the association between HMGB1 and genes involved in autophagy was discovered through correlation analysis. Furthermore, Krouse staging was utilized for investigating the expression levels of HMGB1 and other autophagy-related genes at various stages in clinically staged SNIP patients. RESULTS: LC3B, ATG5, and Beclin1 autophagy-related genes and HMGB1 were substantially expressed in SNIP. Additionally, there was a positive correlation between HMGB1 and these genes. During various phases of SNIP, the levels of HMGB1 expression and autophagy-related genes were notably elevated at stage T4 compared with stage T2. CONCLUSION: Clinical staging in SNIP is correlated with HMGB1 expression in conjunction with autophagy-related genes LC3B, ATG5, and Beclin1, suggesting the possibility of novel prognostic indicators. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

13.
PLoS One ; 19(3): e0298951, 2024.
Article En | MEDLINE | ID: mdl-38547228

In this study an innovative parameterized water-bomb wheel modeling method based on recursive solving are introduced, significantly reducing the modeling workload compared to traditional methods. A multi-link supporting structure is designed upon the foundation of the water-bomb wheel model. The effectiveness of the supporting structure is verified through simulations and experiments. For robots equipped with this water-bomb wheel featuring the multi-link support, base on the kinematic model of multi-link structure, a mapping algorithm that incorporates parameterized kinematic solutions and IMU-fused parameterized odometry is proposed. Based on this algorithm, SLAM and autonomous navigation experiments are carried out in simulation environment and real environment respectively. Compared with the traditional algorithm, this algorithm the precision of SLAM is enhanced, achieving high-precision SLAM and autonomous navigation with a robot error rate below 5%.


Robotics , Reactive Oxygen Species , Algorithms , Computer Simulation , Water
14.
Integr Zool ; 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38556617

Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (Lasiopodomys brandtii) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as Pink1, Prkn, Tomm7, Mnf2, Lc3, Optn, Gabarap, and Nbr1 were all upregulated in LP. Fluorescence in situ hybridization indicated that Pink1 expression was present in spermatogonia in SP, while in LP, Pink1 expression extended to almost all germ cell types with significantly higher mean optical density. Prkn expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.

15.
Perit Dial Int ; : 8968608231224612, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360557

BACKGROUND: This network meta-analysis (NMA) aimed to compare the clinical advantage of four commonly used peritoneal dialysis catheters (PDCs) including the Swan neck segment with straight tip (Swan neck + S), Tenckhoff segment with straight tip (Tenckhoff + S), Swan neck segment with coiled tip (Swan neck + C) and Tenckhoff segment with coiled tip (Tenckhoff + C). METHODS: Randomised clinical trials were searched from PubMed, Embase, the Cochrane Register of clinical trials, China National Knowledge Infrastructure (CNKI) and ChinaInfo from their inception until July 31, 2022. Meta-analysis was performed using Stata 14.0 and RevMan 5.3.5 software to evaluate the four commonly used PDCs. RESULTS: Seventeen studies involved 1578 participants were included. NMA showed that compared with Swan neck + C, Swan neck + S significantly reduced catheter tip migration (OR 0.47 95% CI 0.22-0.99). Tenckhoff + S was more effective in reducing catheter dysfunction (OR 0.42, 95% CI 0.23-0.79), catheter tip migration with dysfunction (OR 0.19, 95% CI 0.05-0.78) and catheter removal (OR 0.56, 95% CI 0.34-0.93) which were consistent with the pairwise meta-analysis. According to the surface under the cumulative ranking curve, Swan neck + S emerged as the best PDC in the reduction of catheter tip migration (83.3%), followed by Tenckhoff + S (79.4%). Moreover, Tenckhoff + S (86.5%, 76.3%) and Swan neck + S (72.3, 86.9%) ranked as the first and second PDC for 1 and 2-year technique survival which was significantly higher than those of the other two PDCs. CONCLUSION: Our NMA showed Swan neck + S and Tenckhoff + S tended to be more efficacious than Swan neck + C and Tenckhoff + C in lowering the mechanical dysfunction and prolonging the technique survival, which may contribute to better clinical decisions. More randomised controlled trials with larger scales and higher quality are needed in order to obtain more credible evidence.

16.
Int J Biol Macromol ; 263(Pt 1): 130309, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382779

Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.


Proteostasis , Ubiquitin , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin/chemistry , Catalytic Domain , Ubiquitin Thiolesterase/chemistry
17.
Article En | MEDLINE | ID: mdl-38350159

PURPOSE: To compare the short-term changes in cornea, retina and choroid of femtosecond laser-assisted cataract surgery (FLACS) with conventional phacoemulsification (CPS) in high myopia patients with cataract. SETTING: Affiliated Hospital of Nantong University, Jiangsu Province, China. DESIGN: Prospective single-center study. METHOD: Demographics, ocular clinical features, ultrasound power, absolute phacoemulsification time, and effective phacoemulsification time were recorded for each patient. Endothelial cell density (ECD), central corneal thickness (CCT), best corrected distance visual acuity (CDVA), intraocular pressure(IOP), center foveal thickness(CFT), subfoveal choroidal thickness (SFCT) and choroidal vascularity index (CVI) were evaluated preoperatively and at 1 week, 1 month, and 3months postoperatively. Intraoperative parameters and intraoperative /postoperative complications were recorded. RESULTS: Ninety-seven eyes (46 eyes and 51 eyes in the FLACS and CPS groups, respectively) were included and analyzed. Cumulative dissipated energy was lower in FLACS group compared with CPS group (P <0.05). The increase in CCT was significantly lower in the FLACS group compared with the CPS group at 1week and 1month (P <0.05). CDVA and IOP were similar in both groups at the final visit (P > 0.05). The ECD decreased was lower among CPS patients compare with FLACS patients. CFT, SFCT and CVI increase in both groups but were increase more in CPS group with high myopia patients. No serious complications occurred in either group. CONCLUSIONS: FLACS is a more safety and effective in cataract patients with high myopia. It has advantages in effectively reducing EPT and promoting faster recovery of the cornea, macular and choroidal thickness.

18.
J Colloid Interface Sci ; 663: 103-110, 2024 Jun.
Article En | MEDLINE | ID: mdl-38394815

As the drawbacks of antibiotics in treating bacterial infections emerged, physical methods such as near-infrared-activated (NIR-activated) bacterial killing, have attracted great interests for their advantages of no resistance, short action time and few side effects. In this manuscript, NIR-activated bacteria-killing performance of chiral copper sulphide nanoparticles (L-/d-CuS NPs) was investigated using linearly polarized light (LPL) and circularly polarized light (CPL) as illumination sources, respectively. Chiral CuS NPs showed enhanced NIR-activated bacteria-killing effect compared with achiral CuS NPs under the same conditions. Moreover, these chiral CuS NPs showed obvious chirality-related antibacterial effect: the bacterial killing was more efficient under CPL activation, and L- and d-CuS NPs had higher antibacterial efficiency under left circularly polarized light (LCPL) and right circularly polarized light (RCPL), respectively. The possible mechanism of bacteria-killing performance for chiral CuS NPs was discussed in detailed. Photothermal bacteria-killing tests of chiral CuS NPs "sealed" in polydimethylsiloxane (PDMS) demonstrated the individual influence of photothermal effect. These observations in this paper could provide ideas for the potential applications of chiral nanostructures with enhanced photothermal effect in efficient bacterial killing.


Nanoparticles , Nanostructures , Nanoparticles/chemistry , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Copper/pharmacology , Copper/chemistry , Bacteria
19.
J Neurotrauma ; 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38185845

Abstract With the recovery of motor function, some spinal cord injury (SCI) patients still suffer from severe pain-like behaviors symptoms. Whether motor function correlates with neuropathic pain-like behaviors remain unclear. In this study, a longitudinal cohort study of mice with moderate thoracic 10 contusion was performed to explore the characteristics of neuropathic pain-like behaviors and its correlation with motor function in different sexes. Pain-like behaviors data up to 42 days post-injury (dpi) were collected and compared. Mice of both sexes were divided into three groups based on their Basso Mouse Scale at 42 dpi. There was no significant difference in motor function recovery between the sexes. Female mice showed more significant mechanical allodynia than males at 14 dpi, which was sustained until 42 dpi without significant dynamic changes. However, males showed a gradually worsening state and more severe mechanical allodynia than females at 28 dpi, and then the differences disappeared. Interestingly, male mice obtained more severe cold hyperalgesia symptoms than females. Additionally, we found that there was a correlation between the occurrence of mechanical allodynia and cold and thermal hyperalgesia. Importantly, motor function recovery was positively associated with the outcomes of neuropathic pain-like behaviors after SCI, which was more obvious in female mice. Our data not only revealed the characteristics of neuropathic pain-like behaviors but also clarified the correlations between motor function recovery and neuropathic pain-like behaviors after SCI. These findings may provide new opinions and suggestions for promoting the clinical diagnosis and treatment of neuropathic pain-like behaviors after SCI.

20.
Sci Rep ; 14(1): 642, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38182644

Coal mining machine drums are prone to damage and malfunction under extremely complex working conditions, which seriously affects the efficiency and safety of coal production. In this paper, based on the theory of coal rock cutting and virtual simulation technology, finite element models of drum cutting coal rock were established and then verified by physical experiments. Through simulation analysis, the dynamic reliability of the drum was studied from three aspects: load, stress and wear, and a mathematical model of drum load was established with respect to the traction speed and drum rotation speed; based on the orthogonal test, the optimal working parameters to improve the wear resistance of the drum were derived. The results of the study found that when the traction speed increases, the load on the drum increases, and when the drum rotation speed increases, the load on the drum decreases; when the traction speed is increased from 2 to 6 m/min, the stress on the pick body under different rotation speeds increases to different degrees, with an average increase rate of 27.394%; when the drum rotation speed is 90 r/min, the traction speed is 3 m/min, and the coal loading mode is projectile loading, the wear depth of the picks and spiral blades is relatively small. The research method and results of this paper can provide a reference for the selection of the drum working parameters.

...